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Abstract  

We present an original approach of true amplitude seismic imaging by means of weighted 

summation of multi-shot multi-offset data. These weights are computed by Gaussian beam 

(GB) tracing from current points within target area towards acquisition system. The special 

choice of GB provides possibility to take into account both illumination conditions and 

structure of covering layers. Global GB regularity allows person to be not care of caustics and 

foci locations and to use uniform relations through the target area and overburden layers.  

Introduction. 

Our aim is to image scatterers/reflectors in the Earth for a given macrovelocity model. There 

are plentiful theories and numerical algorithms designated to achieve this goal. Following [5], 

let us split all these approaches on two families – kinematic imaging and dynamic imaging 

and let us deal with the second one. Next, within this family we are interesting in amplitude 

preserving imaging procedures, that is with procedures providing images being free from 

influence of illumination conditions and geometrical spreading factor.  

The common approaches to construct the desired image can be traced to the papers [2,3] and 

are based on a different kind of asymptotic expansion of Green’s function in heterogeneous 

media. Up to the recent time the mainly used approximation is zero order ray expansion being 

valid for regular rays configuration only. The migration procedure being free from this 

shortcoming is Hill’s Gaussian Beams (GB) migration [4]. It is based on representation of 

Green’s function as a GB superposition being valid both for regular and irregular rays 

configurations. But at the moment there are a few attempts to develop preserving amplitude 

version of GB migration [1]. 

The approach presented below is quite different from all others because it does not use for 

true-amplitude imaging any asymptotic expansion of Green’s function at all. Our version of 

stacking integral involves single GB, not their superposition. True/preserving amplitude 

imaging happens to be the intrinsic property of the proposed imaging procedure that is not 

needed in any additional computations and storage of true amplitude kernels and Hessians. 

Statement of the problem 

The wave propagation velocity below is supposed to be decomposed as macro-velocity 

),(0 zxc  and reflectivity/scatterer component ),(1 zxc . In order to describe scattered/reflected 

wave field );0,;,(1 ωsxzxu  Born’s approximation is used. Input multi-shots multi-offsets data 

will be dealt with later are multi-shot multi-offset reflected/scattered waves 

);0,;0,(),,( 1 ωωϕ ss xxuxx = . 

True/preserving amplitudes imaging in the consequent will be treated as a procedure 

providing images with intensities being proportional to sharpness of the background 

perturbations 
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Description of the method 
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Let us choose some current interior point ),( zx  within target area and shoot from this point 

couple of rays toward free surface for given macro velocity model (see Fig.1) and construct a 

couple of GB - );;,;,( ,0

)( ωsg

gb xzxzxu  - attached to these rays as described in ([7], chapter 8). 

Here )0,( ,0 sgx  are points where these rays meet free surface. Now, taking into account that 

GB is a solution to the Helmholtz’s equation and applying Green’s theorem twice one comes 

to the following integral identity: 
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The product of GB in the right hand side of this identity is vanishing outside of intersection of 

hyperbolic vicinities of introduced above rays (fig.1). The diameter of this vicinity is about 

dominant wavelength. So, in the right hand side of (1) one can perform integration over this 

vicinity only and use within this vicinity constant macro velocity model ),(),( 00 zxcc ≅ηξ . 

This provides one with advantage to use explicit formula for GB within homogeneous media 

(see [7], chapter 8) rewritten in polar coordinates originated at current point ),( zx as:  
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It should be underlined, that this possibility is provided by special choice of mentioned above 

Gaussian beams – they possess their narrowest part at the current point ),( zx . Now in order 

to get the true/preserving amplitude image at the current point one should multiply both sides 

of (1) by { })),(),((exp 00 zxzxi sg ττω +−  and integrate with respect to ω : 
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As one can see, this is nothing else, but convolution of the sharpness of background 

perturbation with “smoothing” kernel: 

ω

ω
ϕϕρ

ϕϕ

ω
ϕϕρ

ϕϕωρ

ϕϕϕϕ
ωρωϕϕϕρ

ω

d
zxcikzxcikzxc

i

zxc
iFK

s

s

g

g

sg

sg

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+−

−
+

+−

−
−×

×
⎭
⎬
⎫

⎩
⎨
⎧ −+−
−= ∫

),(

2
)cos(

)(sin

),(

2
)cos(

)(sin

),(2
exp

),(

)cos()cos(
exp)(),;,(

0
0

0

2

0
0

0

2

0

2

0

00

00

(2) 



3 

EAGE 67
th
 Conference & Exhibition — Madrid, Spain, 13 - 16 June 2005 

The smoothing kernel is determined by the local property of macro velocity model and does 

not depend on the illumination conditions and structure of the upper layers. It happens 

because the special choice of GB with shooting from the bottom is used as weights in (1) – 

they are computed for the given macro velocity model and take into account its global 

variability already.  

 

Fig.1. Geometry of true/preserving 

amplitude GB imaging 

Fig.2. Recovered (blue) and true (red) 

reflectivity 

 

Fig.3. Recovered (left) and real (right) easy pieces of Sigsbee2A model. 

Synthetic data processing 

In order to illustrate presented above approach of true/preserving amplitude imaging synthetic 

SIGSBEE2A data set generated by SMAART Joint Venture were processed. On the Fig.2 one 

can see recovered (blue) and true (red) reflectivity taken along vertical line at x=26025 ft. 

There is perfect coincidence of jumps positions and amplitudes for both these reflectivities. 

Next, on the Fig.3 there are presented both recovered and real structures of the easy piece of 

Sigsbee2A model. As easy we mean the piece free from the salt body. The strip on the bottom 

right of the recovered part is produced by the GB diffraction on the left salt flank. The quality 

of subsalt recovery one can see on the Fig.4. There is again perfect matching of recovered and 
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real structures. Another important property of the proposed approach is its ability to stress 

reflected/scattered elements with specific orientations. The more careful analysis of 

smoothing kernel (2) proves that the brightest on the image are elements possessing normal 

being bisectrix of the angle formed by the chosen couple of rays. On the Fig.5 one can see 

image formed by the rays oriented to imaging of steep reflecting elements. As one can see 

there is almost no presence of regular interfaces but fault only. The image of point sactterers 

is still present because of uniform character of their dispersion index.  

 

Fig.4. Subsalt imaging. Fig.5. Fault imaging: recovered (left) and 

real (right) 
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